## **NADCA**

#### A-3-1-21

**STANDARD** 

## **Alloy Data**

an initial immersion zinc coating, followed by conventional copper-nickel-chromium plating procedure similar to that used for plating zinc metal/alloys.

Protection against environmental corrosion for aluminum die castings is achieved through painting, anodizing, chromating, and iridite coatings.

Improved wear resistance can be achieved with aluminum die castings by hard anodizing.

Where a part design does not allow the production of a pressure-tight die casting through control of porosity by gate and overflow die design, the location of ejector pins, and the reconfiguration of hardto-cast features, impregnation of aluminum die castings can be used. Systems employing anaerobics and methacrylates are employed to produce sealed, pressure-tight castings with smooth surfaces. Adetailed discussion of finishing methods for aluminum die castings can be found in Product Design For Die Casting (NADCA Publication E-606).

Table A-3-1 Chemical Composition: Al Alloys All single values are maximum composition percentages unless otherwise stated.

|                       | Aluminum Die Casting Alloys 🔊 🖸 |                  |                  |                  |                   |                   |                   |              |                |              |
|-----------------------|---------------------------------|------------------|------------------|------------------|-------------------|-------------------|-------------------|--------------|----------------|--------------|
| Common:<br>ANSI/AA    | 360*<br>360.0                   | A360*<br>A360.0  | 380 ®<br>380.0   | A380 ®<br>A380.0 | 383<br>383.0      | 384 ®<br>384.0    | B390<br>B390.0    | 413<br>413.0 | A413<br>A413.0 | 518<br>518.0 |
| Nominal<br>Comp:      | Mg 0.5<br>Si 9.0                | Mg 0.5<br>Si 9.5 | Cu 3.5<br>Si 8.5 | Cu 3.5<br>Si 8.5 | Cu 2.5<br>Si 10.5 | Cu 3.8<br>Si 11.0 | Cu 4.5<br>Si 17.0 | Si 12.0      | Si 12.0        | Mg 8.0       |
| Detailed Composition  |                                 |                  |                  |                  |                   |                   |                   |              |                |              |
| <b>Silicon</b><br>Si  | 9.0-10.0                        | 9.0-10.0         | 7.5-9.5          | 7.5-9.5          | 9.5-11.5          | 10.5-12.0         | 16.0-18.0         | 11.0-13.0    | 11.0-13.0      | 0.35         |
| <b>Iron</b><br>Fe     | 2.0                             | 1.3              | 2.0              | 1.3              | 1.3               | 1.3               | 1.3               | 2.0          | 1.3            | 1.8          |
| <b>Copper</b><br>Cu   | 0.6                             | 0.6              | 3.0-4.0          | 3.0-4.0          | 2.0-3.0           | 3.0-4.5           | 4.0-5.0           | 1.0          | 1.0            | 0.25         |
| Magnesium<br>Mg       | 0.4-0.6                         | 0.4-0.6          | 0.30 €           | 0.30 €           | 0.10              | 0.10              | 0.45-<br>0.65     | 0.10         | 0.10           | 7.5-8.5      |
| Manganese<br>Mn       | 0.35                            | 0.35             | 0.50             | 0.50             | 0.50              | 0.50              | 0.50              | 0.35         | 0.35           | 0.35         |
| <b>Nickel</b><br>Ni   | 0.50                            | 0.50             | 0.50             | 0.50             | 0.30              | 0.50              | 0.10              | 0.50         | 0.50           | 0.15         |
| <b>Zinc</b><br>Zn     | 0.50                            | 0.50             | 3.0              | 3.0              | 3.0               | 3.0               | 1.5               | 0.50         | 0.50           | 0.15         |
| <b>Tin</b><br>Sn      | 0.15                            | 0.15             | 0.35             | 0.35             | 0.15              | 0.35              | _                 | 0.15         | 0.15           | 0.15         |
| <b>Titanium</b><br>Ti | _                               | _                | _                | _                | _                 | _                 | 0.20              | _            | _              | _            |
| Others<br>Each        | _                               | _                | _                |                  | _                 | _                 | 0.10              |              | _              | _            |
| Total<br>Others ©     | 0.25                            | 0.25             | 0.50             | 0.50             | 0.50              | 0.50              | 0.20              | 0.25         | 0.25           | 0.25         |
| Aluminum<br>Al        | Balance                         | Balance          | Balance          | Balance          | Balance           | Balance           | Balance           | Balance      | Balance        | Balance      |

Analysis shall ordinarily be made only for the elements mentioned in this table. If, however, the presence of other elements is suspected, or indicated in the course of routine analysis, further analysis shall be made to determine that the total of these other elements are not present in excess of specified limits. © With respect to mechanical properties, alloys A380.0, 383.0 and 384.0 are substantially interchangeable. © For RoHS (the European Union's Directive on Restriction of to mechanical properties, alloys A380.0, 383.0 and 384.0 are substantially interchangeable. © For RoHS (the European Union's Directive on Restriction of Hazardous Substances) compliance, certification of chemical analysis is required to ensure that the "total others" category does not exceed the following weight percent limits: 0.01% cadmium, 0.4% lead, and 0.1% mercury. Hexavalent chromium does not exist in the alloys and therefore meets the 0.1% limit. ® Registration for REACH (the European Union's Directive on Registration, Evaluation, and Authorization of Chemicals) is not required for die castings, even if coated, since die castings are considered articles. Notification may be required if some contained substances in the die casting or coating exceed the 0.1% total weight of the article level and are listed as SVHC (substances of very high concern). ® NADCA allows 0.30 maximum magnesium as opposed to 0.10. A380 with 0.30 magnesium has been registered with the Aluminum Association as E380 and 383 with 0.30 magnesium as B383.

\*Two other aluminum alloys, 361 and 369, are being utilized in limited applications where vibration and wear are of concern. There are also other heat treatable specialty alloys available for structural applications, such as the Silafonts and AA365, and high ductility, high strength alloys such as Mercalloy and K-Alloy. Contact your alloys tradyer for more information.

your alloy producer for more information. Sources: ASTM B85-92a; Aluminum Association.

**NADCA** 

**STANDARD** 

# **Alloy Data**

Typical values based on "as-cast" characteristics for separately die cast specimens, not specimens cut from production die castings.

| Table A-3-2 Typical Material Properties: Al Alloys |
|----------------------------------------------------|
|----------------------------------------------------|

| 7.1                                                                                                                                                          | Aluminum Die Casting Alloys |                        |                        |                    |                       |                       |                       |                        |                        |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------|------------------------|--------------------|-----------------------|-----------------------|-----------------------|------------------------|------------------------|-----------------------|
| Common:<br>ANSI/AA                                                                                                                                           | 360*<br>360.0               | A360*<br>A360.0        | 380<br>380.0           | A380 E F<br>A380.0 | 383 <b>E</b> 383.0    | 384<br>384.0          | B390<br>B390.0        | 413<br>413.0           | A413<br>A413.0         | 518<br>518.0          |
| Mechanical Prop                                                                                                                                              | erties                      |                        |                        |                    |                       |                       |                       |                        |                        |                       |
| Ultimate Tensile S                                                                                                                                           | trength<br>44               | 46                     | 46                     | 47                 | 45                    | 48                    | 46                    | 43                     | 42                     | 45                    |
| (MPa)                                                                                                                                                        | (303)                       | (317)                  | (317)                  | (324)              | (310)                 | (331)                 | (317)                 | (296)                  | (290)                  | (310)                 |
| Yield Strength (A)<br>ksi                                                                                                                                    | 25                          | 24                     | 23                     | 23                 | 22                    | 24                    | 36                    | 21                     | 19                     | 28                    |
| (MPa)                                                                                                                                                        | (172)                       | (165)                  | (159)                  | (159)              | (152)                 | (165)                 | (248)                 | (145)                  | (131)                  | (193)                 |
| Elongation<br>% in 2in. (51mm)                                                                                                                               | 2.5                         | 3.5                    | 3.5                    | 3.5                | 3.5                   | 2.5                   | <1                    | 2.5                    | 3.5                    | 5.0                   |
| Hardness ®<br>BHN                                                                                                                                            | 75                          | 75                     | 80                     | 80                 | 75                    | 85                    | 120                   | 80                     | 80                     | 80                    |
| Shear Strength<br>ksi                                                                                                                                        | 28                          | 26                     | 28                     | 27                 |                       | 29                    |                       | 25                     | 25                     | 29                    |
| (MPa)                                                                                                                                                        | (193)                       | (179)                  | (193)                  | (186)              | _                     | (200)                 |                       | (172)                  | (172)                  | (200)                 |
| Impact Strength (b) ft-lb (J)                                                                                                                                |                             | _                      | 3<br>(4)               | _                  | 3<br>(4)              | _                     | _                     | _                      | _                      | 7<br>(9)              |
| Fatigue Strength                                                                                                                                             |                             |                        | (4)                    |                    | (4)                   |                       |                       | ,                      |                        | ())                   |
| ksi<br>(MPa)                                                                                                                                                 | 20<br>(138)                 | 18<br>(124)            | 20<br>(138)            | 20<br>(138)        | 21<br>(145)           | 20<br>(138)           | 20<br>(138)           | 19<br>(131)            | 19<br>(131)            | 20<br>(138)           |
| Young's Modulus<br>psi x 10 <sup>6</sup>                                                                                                                     | 10.3                        | 10.3                   | 10.3                   | 10.3               | 10.3                  |                       | 11.8                  | 10.3                   |                        |                       |
| (GPa)                                                                                                                                                        | (71)                        | (71)                   | (71)                   | (71)               | (71)                  |                       | (81)                  | (71)                   |                        | _                     |
| Physical Properti                                                                                                                                            | ies                         |                        |                        |                    |                       |                       |                       |                        |                        |                       |
| Density<br>lb/in <sup>3</sup><br>(g/cm <sup>3</sup> )                                                                                                        | 0.095<br>(2.63)             | 0.095<br>(2.63)        | 0.099<br>(2.74)        | 0.098<br>(2.71)    | 0.099<br>(2.74)       | 0.102<br>(2.82)       | 0.098<br>(2.71)       | 0.096<br>(2.66)        | 0.096<br>(2.66)        | 0.093<br>(2.57)       |
| Melting Range                                                                                                                                                | (2.03)                      | (2.03)                 | (2.7 1)                | (2.71)             | (2.71)                | (2.02)                | (2.71)                | (2.00)                 | (2.00)                 | (2.37)                |
| °F<br>(°C)                                                                                                                                                   | 1035-1105<br>(557-596)      | 1035-1105<br>(557-596) | 1000-1100<br>(540-595) |                    | 960-1080<br>(516-582) | 960-1080<br>(516-582) | 950-1200<br>(510-650) | 1065-1080<br>(574-582) | 1065-1080<br>(574-582) | 995-1150<br>(535-621) |
| Specific Heat<br>BTU/lb °F<br>(J/kg °C)                                                                                                                      | 0.230<br>(963)              | 0.230<br>(963)         | 0.230<br>(963)         | 0.230<br>(963)     | 0.230<br>(963)        | _                     | _                     | 0.230<br>(963)         | 0.230<br>(963)         | _                     |
| Coefficient of Thermal Expansion                                                                                                                             |                             |                        |                        |                    |                       |                       |                       |                        |                        |                       |
| μ in/in°F<br>(μ m/m°K)                                                                                                                                       | 11.6<br>(21.0)              | 11.6<br>(21.0)         | 12.2<br>(22.0)         | 12.1<br>(21.8)     | 11.7<br>(21.1)        | 11.6<br>(21.0)        | 10.0<br>(18.0)        | 11.3<br>(20.4)         | 11.9<br>(21.6)         | 13.4<br>(24.1)        |
| Thermal Conductivity BTU/ft hr°F 65.3 65.3 55.6 55.6 55.6 55.6 77.4 70.1 70.1 55.6 (W/m °K) (113) (113) (96.2) (96.2) (96.2) (96.2) (134) (121) (121) (96.2) |                             |                        |                        |                    |                       |                       |                       |                        |                        |                       |
| Electrical Conduct % IACS                                                                                                                                    |                             | 29                     | 27                     | 23                 | 23                    | 22                    | 27                    | 31                     | 31                     | 24                    |
| Poisson's Ratio                                                                                                                                              | 0.33                        | 0.33                   | 0.33                   | 0.33               | 0.33                  |                       |                       |                        |                        |                       |
| 2 0100011 0 1111110                                                                                                                                          | 0.00                        | 0.00                   | 0.00                   | 0.00               | 0.00                  |                       |                       |                        |                        |                       |

<sup>© 0.2%</sup> offset. ® 500 kg load, 10mm ball. © Rotary Bend 5 x 10<sup>s</sup> cycles. © Notched Charpy. Sources: ASTM B85-92a; ASM; SAE; Wabash Alloys. © A 0.3% Mg version of A380 and 383 have been registered with the Aluminum Association as E380 and B383. © Higher levels of Mg and the addition of Sr to alloy A380 have shown positive results.

<sup>\*</sup>Two other aluminum alloys, 361 and 369, are being utilized in limited applications where vibration and wear are of concern. There are also other heat treatable specialty alloys and processes available for structural applications, such as the Silafonts and AA365 (Aural 2), and high ductility, high strength alloys such as Mercalloy and K-Alloy. Contact your alloy producer for more information. More information can also be obtained from Microstructures and Properties of Aluminum Die Casting Alloys Book, NADCA Publication #307.

## **NADCA**

#### A-3-3-21

### **GUIDELINES**

# **Alloy Data**

Die casting alloy selection requires evaluation not only of physical and mechanical properties, and chemical composition, but also of inherent alloy characteristics and their effect on die casting production as well as possible machining and final surface finishing.

This table includes selected die casting and other special characteristics which are usually considered in selecting an aluminum alloy for a specific application.

The characteristics are rated from (1) to (5), (1) being the most desirable and (5) being the least. In applying these ratings, it should be noted that all the alloys have sufficiently good characteristics to be accepted by users and producers of die castings. A rating of (5) in one or more categories would not rule out an alloy if other attributes are particularly favorable, but ratings of (5) may present manufacturing difficulties.

The benefits of consulting a custom die caster experienced in casting the aluminum alloy being considered are clear.

Table A-3-3 Die Casting And Other Characteristics: Al Alloys

(1 = most desirable, 5 = least desirable)

|                                       | Aluminum Die Casting Alloys |                 |              |                |              |              |               |              |                |              |
|---------------------------------------|-----------------------------|-----------------|--------------|----------------|--------------|--------------|---------------|--------------|----------------|--------------|
| Common:<br>ANSI/AA                    | 360*<br>360.0               | A360*<br>A360.0 | 380<br>380.0 | A380<br>A380.0 | 383<br>383.0 | 384<br>384.0 | 390<br>B390.0 | 413<br>413.0 | A413<br>A413.0 | 518<br>518.0 |
| Resistance to<br>Hot Cracking (A)     | 1                           | 1               | 2            | 2              | 1            | 2            | 4             | 1            | 1              | 5            |
| Pressure Tightness                    | 2                           | 2               | 2            | 2              | 2            | 2            | 4             | 1            | 1              | 5            |
| Die-Filling Capacity ®                | 3                           | 3               | 2            | 2              | 1            | 1            | 1             | 1            | 1              | 5            |
| Anti-Soldering to the Die ©           | 2                           | 2               | 1            | 1              | 2            | 2            | 2             | 1            | 1              | 5            |
| Corrosion Resistance D                | 2                           | 2               | 4            | 4              | 3            | 5            | 3             | 2            | 2              | 1            |
| Machining Ease & Quality ©            | 3                           | 3               | 3            | 3              | 2            | 3            | 5             | 4            | 4              | 3            |
| Polishing Ease & Quality ®            | 3                           | 3               | 3            | 3              | 3            | 3            | 5             | 5            | 5              | 1            |
| Electroplating Ease & Quality ©       | 2                           | 2               | 1            | 1              | 1            | 2            | 3             | 3            | 3              | 5            |
| Anodizing (Appearance) <sup>(H)</sup> | 3                           | 3               | 3            | 3              | 3            | 4            | 5             | 5            | 5              | 1            |
| Chemical Oxide Protective Coating ①   | 3                           | 3               | 4            | 4              | 4            | 5            | 5             | 3            | 3              | 1            |
| Strength at Elevated Temp. ①          | 1                           | 1               | 3            | 3              | 2            | 2            | 3             | 3            | 3              | 4            |

Ability of alloy to withstand stresses from contraction while cooling through hot-short or brittle temperature ranges. B Ability of molten alloy to flow readily in die and fill thin sections. Ability of molten alloy to flow without sticking to the die surfaces. Ratings given for anti-soldering are based on nominal iron compositions of approximately 1%. Based on resistance of alloy in standard type salt spray test. Composite rating based on ease of cutting, chip characteristics, quality of finish, and tool life. Composite rating based on ease and speed of polishing and quality of finish provided by typical polishing procedure. Ability of the die casting to take and hold an electroplate applied by present standard methods. Rated on lightness of color, brightness, and uniformity of clear anodized coating applied in sulphuric acid electrolyte. Rated on combined resistance of coating and prolonged heating at testing temperature. Sources: ASTM B85-92a; ASM; SAE Rating based on tensile and yield strengths at temperatures up to 500F (260C), after prolonged heating at testing temperature. Sources: ASTM B176-93a

**Note:** Die castings are not usually solution heat treated. Low-temperature aging treatments may be used for stress relief or dimensional stability. A T2 or T5 temper may be given to improve properties. Because of the severe chill rate and ultra-fine grain size in die castings, their "as-cast" structure approaches that of the solution heat-treated condition. T4 and T5 temper results in properties quite similar to those which might be obtained if given a full T6 temper. Die castings are not generally gas or arc welded or brazed.

**Table 3-6 Additional A380 Alloy Tensile Data**(Data is from separately cast specimines in the naturally aged condition)

|                                 | 7.8               |                 |         |
|---------------------------------|-------------------|-----------------|---------|
| Alloys                          | Tensile ksi (MPa) | Yield ksi (MPa) | Elong % |
| A380 at 0.09% Mg                | 45.5 (243)        | 23.8 (135)      | 2.6     |
| A380 with 0.26% Mg              | 47.0 (201)        | 26.6 (183)      | 2.8     |
| A380 with 0.33% Mg + 0.035% Sr* | 45.7 (177)        | 28.5 (196)      | 2.4     |

<sup>\*</sup> Identified as AMC380\* in research being conducted by WPI and funded by DoD/DLA. The values in this table are the average mean values and are provided to indicate the effect of a higher magnesium content and additional strontium. The properties shown do not represent design minimums and should be used for reference only.

<sup>\*</sup> Two other aluminum alloys, 361 & 369, are being utilized in limited applications where vibration and wear are of concern. There are also other heat treatable specialty alloys available for structural applications, such as the Silafonts and AA365, and high ductility, high strength alloys such as Mercalloy and K-Alloy. Contact your alloy producer for more information.